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It is suggested that some relaxation processes observed in crystalline polyethylene are consequences of 
the diffusive motion of a particular defect called a point dislocation or twist dispiration loop along the 
polyethylene stems in lamellar crystals. The motion of the defect, characterized by a diffusion coefficient 
and a mobility, is described by solutions of the Smoluchowski diffusion equation with boundary 
conditions that constrain the defect to move along routes that produce experimentally observable 
results. The fact that passage of the defect causes both a 180* rotation of the chain and moves an extra 
C H 2 group in the direction of the chain axis is important to the interpretation of the data according to this 
model. The diffusion coefficient for a defect is estimated to be around 2 x 10 -9 c m  2 s -1 at 70"C. This 
value is shown to be reasonable both from the viewpoint of detailed computer modelling of defect 
motion and contemporary ideas about scaling. 
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I N T R O D U C T I O N  

It is suggested that  some re laxat ion  processes and o ther  
effects are consequences  of the mot ion  of a par t icu la r  
defect in a polyethylene crystal.  The  defect of interest  here 
is called a poin t  d is locat ion 1 or  a twist d i sp i ra t ion  loop  2. 
In this paper  the word  'defect '  is used not  in its general  
sense but  as a shor t  name for a poin t  d is loca t ion  in a 
polyethylene  crystal.  

The passage of a poin t  d is locat ion  a long a stem of a 
polyethylene  molecule  in a crystal  causes two impor t an t  
changes in the par t  of the stem th rough  which the defect 
passes.* The par t  of the chain t raversed by the defect is 
moved in the same direct ion as the defect t ravels  by a 
dis tance of one-half  the c-axis d imens ion  of the unit  cell. 
This axial  transfer provides  an elemental  mechanism for 
lamel lar  th ickening 1 and for de format ion  processes that  
require  a chain  to move th rough  a crystal.  

* A few additional properties of point dislocations (defects) which may 
be of interest although they are not all essential to this paper are: Defects 
may be absorbed or emitted from folds. A defect absorbed into a fold 
from one stem may be emitted from the same fold into the adjacent stem 
A defect entering or leaving a fold moves the fold and so may lead to 
interactions with folds in an adjacent lamella. Defects may be created or 
annihilated at chain ends. Row vacancies at chain ends may be avoided 
by screw dislocation-like features that extend from a particular chain 
end to another end or to the surface of a lamella. Defects have a parity 
that is important in the details of interactions with folds, twist 
boundaries, or other chain conformations that may occur in 
interlamellar regions. The energy required to emit a defect from a fold 
may be significantly smaller than the excess energy of a defect in an 
otherwise perfect lattice. Point dislocations or twist dispiration loops 
can occur generally in polymer crystals. The twist and the amount of 
extra mass associated with a defect will depend upon the symmetry of the 
molecule and the crystal. The amount of extra mass may be positive (one 
CH2 for polyethylene) or negative for the vacancy-like defects that can 
be created in some helical molecules by short-cutting across a turn of the 
helix. 

The second change p roduced  by the passage of a defect 
is a 180 ° ro ta t ion  of the par t  of the molecule  t raversed by 
the defect. This defect- induced ro ta t ion  has some 
consequences similar  to a rigid rod  ro ta t ion  but  it avoids  
in termedia te  setting angles for the chain since most  of the 
t ime most  of the chain is in ei ther one of two posi t ions  
abou t  180 ° apart .  Such a d i scont inuous  or  restr icted 
ro ta t ion  is observable  in certain carbon-13 nuclear  
magnet ic  resonance  da t a  3. Rota t ion  may  also be inferred 
from dielectric measurements  on polyethylene samples  
which conta in  a low concent ra t ion  of electric d ipoles  such 
as can be p roduced  by lightly oxidizing polyethylene  4. 
Cha in  ro ta t ion  has been related to dielectric and  
mechanical  re laxat ion  phenomena  5. 

This paper  shows how the chain ro ta t ion  p roduced  by 
the passage of a defect can account  for nuclear  magnet ic  
resonance  and dielectric data .  Addi t iona l ly ,  it is shown 
how changes in the pos i t ion  of the defect which are 
coupled to mechanical  de format ion  (for example ,  to 
lamel lar  bending) can lead to mechanical  re laxa t ion  in the 
t empera tu re  and t ime region in which mechanical  
re laxat ion  processes are observed.  

The model  adop ted  in this paper  deals  for s implici ty 
with the case of one defect per  stem. The  ac tua l  defect 
concent ra t ion  as a function of t empera tu re  is not  well 
established. Longi tud ina l  acoust ic  mode  intensi ty da ta  
in terpreted as p roposed  by Reneker  and Fancon i  6 suggest 
that  at 70°C ~, and  at  120°C ¼ of the 30 nm long 
stems conta in  one or  more  defects. More  recent 
longi tudina l  acoust ic  mode  intensity da ta  ~ also lead to 
defect concent ra t ions  in this range. The defect 
concent ra t ion  appears  to be cont ro l led  more  by the 
relat ively small  energy difference between a defect and  a 
fold than  by  the somewhat  larger energy required to place 
a defect in a perfect lattice. 
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Measurements a of the intensities of two infra-red bands 
in a five percent doubly deuterated polyethylene, which 
are known from normal mode analysis to be associated 
,with bond dihedral angle sequences which are 
approximately trans-trans or trans-gauche, also provide 
qualitative information about the temperature range in 
which defects are thermally generated. 

The defect is a localized region less than 1 nm long 
which has a conformation that changes in complicated 
ways as the defect region diffuses along a chain. Some 
reasonably realistic examples of this motion were 
modelled using interatomic potentials and the known 
geometry of polyethylene crystals 9. Adjacent chains are 
slightly distorted but remain close to the planar zig-zag 
conformation. Interactions between defects in adjacent 
stems are ignored. 

In this paper, little attention is paid to the internal 
features of the defect. The defect is treated as a point which 
may move along the chain. The motion of the defect is 
characterized by a diffusion coefficient D and a mobility # 
which is the ratio of the drift velocity of the defect to the 
force causing the drift. The mobility is related to the 
reciprocal of the parameter called the friction constant, a 
term widely used in the literature dealing with the motion 
of polymer molecules in solutions or melts. The diffusion 
coefficient and the mobility are connected by the Einstein 
relation D -- I~kT where k is Boltzmann's constant and T is 
the absolute temperature. 

The defect motion is considered to be stochastic. A 
defect jumps from one minimum energy site to an adjacent 
one under the influence of thermal fluctuations and other 
forces which may result from macroscopic electric or 
strain fields. These jumps have lengths which are small 
compared to the length of the stem along which the defect 
moves. The jumps occur in times that are small compared 
with the time required for the defect to move through a 
significant part of the stem length. The Smoluchowski 
diffusion equation ~° is used to describe the motion of 
defects. It will also be shown that the value of the diffusion 
coefficient that characterizes the defect motion is 
consistent with the microscopic parameters used in the 
modelling of defect motion by the use of computer 
simulation 9. The characteristic time associated with the 
microscopic motion will be related to the time scale for 
defect motion along a stem by application of the general 
scaling ideas put forward by deGennes 11. 

This paper is divided into five sections. The first 
describes the stochastic motion of a defect as the general 
solution of the diffusion equation. In the second section, 
special solutions are derived for the interpretation of 
dielectric relaxation and nuclear magnetic resonance 
data. Both these experiments provide information about 
the rotation rate of the chain. The defects must traverse 
routes which cause the experimentally observed rotations. 
A particular route is defined by a set of boundary 
conditions. The time for a defect to traverse the route is 
called the 'first passage time u2. The average of these first 
passage times over all possible starting positions Xo of the 
defect is taken as a measure of the rotation rate of the parts 
of the chain relevant to a particular experiment. The third 
section shows how defect translation can produce 
mechanical relaxation. Here the defect energy, which is a 
function of the position of the defect in a particular strain 
field, is of central interest as are the times required for 
defects to diffuse distances of order of the thickness of 

lamellar crystals. The fourth section compares the 
detailed computer model of defect motion 9 with the larger 
scale model of defect diffusion described in the earlier 
sections. The last section applies the techniques of scaling 
theory to defect motion. 

GENERAL SOLUTIONS OF THE DIFFUSION 
EQUATION 

The defect motion in a single stem of a polyethylene 
crystal is described by the Smoluchowski diffusion 
equation: 

Ow D ~2W /~FOw 
t3~-=L 2 t~X 2 L ctx (1) 

Here x is the position of the centre of the defect in the stem 
measured in units in which the stem length, L, is unity, t is 
time, and w(X,Xo,t) is the distribution function of the 
probabilities of finding the defect near x at time t when the 
defect starts at Xo at t =0. The external forces parallel to 
the stem axis are represented by F. If the external forces 
are absent or negligibly small, the last term in equation (1) 
may be omitted. Forces with oscillatory time dependence 
or with a step function dependence upon time are useful 
for relating this model to particular experiments. Forces 
with a step function dependence on time are characterized 

dF 
by the conditions: d t -=  ~ at t = 0, the time at which the 

step occurs and ~ - - 0  for t > 0. Solution of equation (1) 

for t > 0  with a constant F may therefore be used to 
describe the response to a step function force. 

The diffusion model can be applied to a variety of 
interesting physical situations by a judicious choice of the 
boundary conditions. The folds at the ends of a stem can 
either partially or totally reflect or absorb a defect. The 
physical process of emitting a defect from a fold can also 
be modelled by appropriate boundary conditions. 
Absorption and emission of defects at folds is believed to 
be an important part of the process 1, not discussed in 
detail here, by which stem length changes during 
annealing. General solutions of the diffusion equation for 
partially reflecting, partially absorbing barriers can be 
derived easily only when the applied forces are 
independent of space and time. For time dependent forces 
only reflecting barriers will be discussed and perturbation 
methods based on expansion of the distribution function 
in powers of the applied force will be employed. 

Let cq be the probability of defect absorption at a fold 
located at x ' = 0  and Gt 2 that for a fold at x '=L .  In this 
paper, cq and ~2 are either zero or one. Intermediate 
values would be useful for the description of lamellar 
thickening and some kinds of interactions between 
adjacent lamellae. The variable x' ranges from 0 to L, the 
stem length. The general boundary conditions are written 
as follows: 

0~ 1W "-[-(1- c t l ) I ~ -  2Bw] = 0 

~2w ± ( 1 -  c t 2 ) I ~ -  2Bwl = 0 

at x' = 0 

at x' = L 

(2) 
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The dimensionless force parameter B used throughout 
this paper is defined as 

B = F L # / Z D  (3) 

or, using Einstein's relation, as FL/2kT. To simplify the 
equations, x' is expressed in dimensionless form as 
x = x ' /L so that 0 ~< x ~< 1. 

The following transformation ~° is employed to solve 
the diffusion equation (1): 

w = u(x,t)e sl . . . .  ~e - B Z O t / L 2  (4) 

so that equation (1) reduces to the Fickian form: 

c3u D ~2u 

0t - L 2 63x 2 (5) 

The boundary conditions for equation (5) are readily 
obtained from equation (2). Also 

u--,f(X-Xo) as t ~ 0 ,  

since w ~ 6 ( X - X o )  as t~0 .  

Define h 1 and h 2 as follows: 

hi =~x - (1  - ~ I ) B  (6) 

h2 = ~2 + (1 -- ~2)B (7) 

The term w(x,oo) is the steady-state solution at long times, 

w(x, oo) = 2Be 2 ~ -  1'/(1 - e-  2 B) 

This last term is absent unless ~1 and ~2 are both zero in 
which case the defect is never absorbed. In this case, the 
condition (10) must be satisfied14: 

1 

f w(x,xo,t)dx = (10) 1 

0 

It is useful to integrate over all the initial positions of 
the defect to obtain w(x,t): 

1 
t ~  

I w(x'x°'t)dx°" (11) W(X~t) 
LI 

0 

I f  the osci l la tory t ime dependence of  F is wr i t ten 

F = Fo ei'~t (12) 

then solutions to the diffusion equation are obtained in 
the following way. The distribution function is expanded 
as a power series in the force term B: 

w~x,t) = w o + 2Bwl(x)e i'~t + terms of order (2B) p, p/> 2 

(13) 

The solution of equation (5) obtained using Green's 
function is ~ 3 

u = ~ A.Z.(x)Z,(xo)e  -o'~./L2 (8) 
n = l  

where 

and 

Z,(x)  = (1 - 0~ 1)fl.c°s(fl.x) - h lsin(fl.x) 

A, - '  = - h,(1 - cq) + (1 - ~1)2fl 2 + h 2 

- (1  - ~2)h2((I - 
(~1)2fl  2 + hi 

2 2 2 
~2)  f t .  + h2 

_+ ft, for n-- 1,2... are the n roots of the transcendental 
equation 

tan f l -  f l [ h 2 ( 1 - ~ l ) + h l ) l - ~ 2 ) ]  
- h l h 2  + (1 - ~1) (1  - ~2) f l  2 

This expansion implies a random distribution of defect 
starting positions x0. Since Bwl(x,t) = 0 for the unstressed 
state, w 0-- 1. The time independent factor wl(x ) is the 
solution of 

D ~2W 1 
L2 t~x2 - ioow 1 (14) 

The boundary conditions for wl(x ) are 

~W 1 

~x 
- 1  a t x = 0 a n d x = l .  

The solution of equation (14) is 

eC_e_ c e (15) 

where C = x / i ~ L 2 / D .  The higher-order expressions for 
Wp(X) can be obtained from the iterative equation 

The solution of the diffusion equation (1) is then found by 
substituting u from equation (8) into equation (4). 

To describe mechanical relaxation, reflecting boundary 
conditions with ~ = ~ 2 = 0  are needed for reasons 
described later. For these boundary conditions the 
solution of the diffusion equation is 

w ( X , X o , t )  = 

[ nncos(nnx) + Bsin(nnx) ] [ nncos(nnxo) + B sin(nnxo) ] 
2 2. 

n = l  (n2n 2 + B 2) 

x [e - °t/L2(=2"2 + B2) + Btx - ~o~ + w(x, oc) (9) 

D ~2Wp(X) D t3wp_ l(x) 
L2 Ox 2 =ioJwp(x) L2 ?x (16) 

For the bent lamella problem described below, wp for p 
even make no contribution to the bending moment, since 
Wv(X ) is symmetric with respect to the x = ½ axis when p is 
even. For odd p, w e is antisymmetric with respect to the 
x=½ axis, passing through zero value there. The 
contributions of terms with p odd decrease at least as fast 
as [ (2p- l ) ]  -~. Equation (13) with p = l  therefore 
provides usefully precise values of w(x,t) for values of B as 
large as 2. 
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STOCHASTIC DEFECT MOTION AND 
ASSOCIATED CHAIN ROTATION 

It is suggested that both the narrowing of satellite lines in 
lauclear magnetic resonance data and the dielectric 
relaxation phenomena are consequences of the 
distribution of 'first passage times' of a defect along a 
particular route. In the n.m.r, experiment complete 
narrowing of the satellite lines requires that all the CH 2 
groups are rotated at a rate faster than a minimum rate 
deduced from the linewidth. To rotate all the CH2 groups 
in a stem, a defect must traverse the entire stem length at 
least once. The satellite line width is observed to narrow 
when all the CH2 groups are rotated approximately 180 ° 
at a rate of 700 times per second 3. The observed line 
narrowing is interpreted to indicate that a defect passes 
completely through each stem more often than once every 
1/700 of a second at about 70°C. 

The question to be addressed is, 'What is the average 
first passage time for a defect route starting at an arbitrary 
position Xo and passing each CH2 group in a stem of 
length L?' The answer is derived from the solution of the 
diffusion equation with appropriate boundary conditions 
to define the relevant set of defect routes. In the n.m.r. 
experiments no external forces act on the defect so the 
force parameter B is zero. 

The route the defect must travel to rotate an entire stem 
is defined in the following way. An absorbing boundary is 
placed at one end of the stem and a reflecting barrier is 
placed at the other end. The time for a defect starting at Xo 
to make a first passage to the absorbing boundary is 
calculated. The defect may touch the reflecting boundary 
from zero to an arbitrary number of times. The paths 
which go from Xo to the absorbing boundary without 
touching the reflecting boundary (and which therefore do 
not rotate the entire stem) are, in a certain sense, 
completed and accounted for by interchanging the 
absorbing and reflecting boundaries and then repeating 
the calculation. The time for a defect to traverse the entire 
stem is taken as the sum of these two first passage times. 
The sum is then averaged over all possible starting 
positions. This average is the time to be compared with 
that deduced from the n.m.r, satellite line narrowing 
observation 3. 

The computational algorithm for the first passage 
problems can now be formulated as follows. For the route 
that defect travels to narrow the n.m.r, satellite lines, first 
set ~t =0  and ~2 = 1, B = 0  (equation 8). The probability 
distribution function for defects diffusing within these 
boundaries is: 

½, wlx,Xo,t) = Z cos  [(,, + c o s  [ ( .  + ½), Xo] e (n + 2~2 Dr/ L 2 

n = O  

(17) 

Equation (17) is integrated over all Xo to obtain w(x,t): 

1 

w(x,t) = f w(X,Xo,t)dx o (18) 

0 

p(t), the distribution of first passage times to the boundary 
at x = 1 is obtained from 

D Ow(x,t)l 
p x = l ( t ) = - ~ -  t?x [x=l (19) 

To this, a solution obtained by interchanging boundaries, 
that is by setting cq = 1 and ~2 = 0  and evaluating the 
derivative in equation (19) at x = 0 ,  is added. Hence p(t), 
the distribution of first passage times that insure at least 
one 180 ° rotation of every CH 2 group in a stem is 

p(t)=2~Dz ~ e-(.+ ,/2)2.'o,/c2 
t .=o 

(20) 

p(t) is normalized, since f p(t)dt = 1. 
0 

Therefore 

f 32L 2 & 1 L 2 
(t) = tp(t)dt = b~a-n, ~o(2n ~_ 1)* = 3--D 

0 

(21) 

This is almost four times the result that would be obtained 
if both boundaries were absorbing, i.e., if ~a=0t2=0. 
Absorbing boundaries would follow from the question, 
'What is the average time for routes on which the defect 
reaches either of the two boundaries without previously 
reaching the other?' The first passage time for absorbing 
boundaries can be considered as a lower bound on ( t )  for 
a concentration of one defect per stem. 

In a dielectric relaxation experiment such as in the light- 
ly oxidized polyethylene used by Ashcraft and Boyd 4 an 
applied electric field E acts on the dipole moment ~ of an 
isolated polar group attached to a polyethylene stem to 
produce an interaction energy ~'/~. This generally results 
in a small torque on the molecule. In other words, the 
force F in the Smoluchowski diffusion equation is not 
exactly zero as in the n.m.r, experiment. Calculation of the 
relationship between this torque and the resulting force F 
which tends to move the defect along the chain axis is 
rather involved. As will be shown in the section dealing 
with mechanical relaxation, the influence on the 
relaxation times of the force parameter B is small. At 
electric fields up to the dielectric strength, the magnitude 
of the force parameter -#.i~/kT which replaces the 
parameter B, is estimated to be smaller than the 
mechanical force parameter B term for reasonable strain. 
For the evaluation of ( t )  it was found that the last term in 
the diffusion equation (1) can be set equal to zero in the 
treatment of dielectric relaxation presented here, since 
ff.E/kT < 1. It is also assumed that there is one randomly 
located polar group per stem. 

The question to be answered in the interpretation of the 
dielectric data is, 'What is the average time required for a 
defect starting at an arbitrary position in a stem to diffuse 
past a polar group at the arbitrary position x=l, 
assuming that the defect is reflected at the ends of the 
stem?' This is the average time required for the polar 
group to rotate and coincides with the reciprocal of the 
frequency of the applied field at the peak of the dielectric 
loss curve. 

For the route that the defect travels to cause dielectric 
relaxation, the first passage problem is formulated along 
the same general lines as in the interpretation of the n.m.r. 
experiment with modifications as described below. 

The defect starting position Xo may be between l and 
either end of the stem. A first passage calculation is done 
first with a reflecting boundary placed at the end of the 
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X I 

L 

0 i 

p 
t=O 

Figure I Population of thermally generated defects in a lamellar 
crystal of polyethylene an instant before the step-function bending 
moment is applied. The lamella is not yet bent and the defects are 
randomly distributed. A concentration of less than one defect per 
stem is shown to avoid complicating the figure 

stem that is on the same side of l as Xo. The defect path can 
touch the reflecting barrier from zero to an arbitrary 
number of times. The first passage ends when the defect 
encounters an absorbing boundary placed at x = I. Then 
the calculation is repeated for the cases where x 0 lies 
between x = l  and the other end of the stem. Each case 
contributes amounts proportional to l and 1-1,  
respectively, to the average time. For Xo<l, the 
probability distribution function, equation (17) is 
replaced by 

(22) 

Following the same procedure as employed for the n.m.r. 
case, the distribution of first passage times is 

D ~ '  !"22 22 l t~ I  ~ ~--(n+~l ~z 1)I/1 L 
t !.~ n = O  

(23) 

Equation (23) is integrated over all values of I for 0 < l < 1. 
The average time required for a defect to traverse a route 
that rotates a polar group is 

wherefm,x is the frequency at the dielectric loss peak (see 
Figure 13 of ref. 4), the values of D obtained are 

D(n.m.r.) = 2  x 10 -9 cm 2 s -  1 

D(dielectric) = 1.3 x 10 - 9  cm 2 s -  1̀ . 

M E C H A N I C A L  RELAXATION 
Introduction to the bent lamellar crystal model 

The energy of a defect in a crystal depends upon the 
strain of the crystal at the location of the defect. 
Application of most, but not all, types of strains tend to 
cause the defects to diffuse towards more energetically 
favourable locations. Since the diffusion process requires 
some time to occur, the crystal requires a significant time 
to relax to the state in which the defects are in their new, 
lower energy positions. 

It is possible to model this process in detail for a defect 
in a polyethylene crystal. The bent iamella provides an 
inhomogeneous strain field which is straightforward to 
calculate. The elementary relaxation process in the strain 
field of a bent lamella does not require either that the 
defect move through folds or that it interact with chain 
ends. A single defect in a single stem in a bent lamellar 
crystal thus illustrates the mechanical relaxation 
associated with defect diffusion. 

Figure ! shows a population of thermally generated 
defects in a lamellar crystal of polyethylene. Application 
of a step function bending moment,  as shown in Figure 2, 
causes the lamella to bend elastically, For a very short 
time after the bending moment is applied the defects 
remain near their original location. Calculations of defect 
energy show that the defects in the part of the crystal 
which is in compression have a higher energy than the 
defects in the part of the crystal that is expanded. The 
defects will, therefore, tend to move from the compressed 
to the expanded side of a bent crystal. After a time the 
defects will be closer to the expanded side as shown in 
Figure 3. The tendency for the defect to further expand the 
lattice causes the crystal to bend more as the defects 
arrive. When this additional bending has occurred the 
crystal is 'relaxed'. 

The internal motions of a defect which were modelled in 
ref. 9 enable the defect to diffuse to the lower energy 

L 2 

( t ) = 9 ~  (24) 

which is one-third of the result obtained for the route 
appropriate for n.m.r. 

In summary, the interpretation of chain rotation rate 
data is based on estimates of the average time required 
for the random diffusive motion of a defect to rotate all 
(n.m.r.) or part (dielectric) of the stem by 180 °. The theory 
of first passages of a randomly moving defect which 
rotates the chain as the defect diffuses along a stem 
provides a basis for the calculation of the average rotation 
rates. It is then possible to calculate the diffusion constant 
D that describes the diffusive motion of the defect from the 
rotation times deduced from n.m.r, or dielectric relaxation 
experiments. 

The stem length L, which can be independently 
determined from low angle X-ray measurements, is 
assumed to be 30 nm. Using either equation (21) with 
0 ) = 1 / 7 0 0  3 or equation (24) with (t)=l/2f~nax, 

It///// 
Figure 2 Similar population of defects an instant after a segment 
of the lamefla is elastically bent by a small angle e~,. The defects 
retain the same random distr ibution since they have not had t ime 
to  diffuse toward lower energy positions. The elastic part of the 
bending angle between adjacent stems, called 8 e in the text ,  is ob- 
tained by dividing 8~, by the number of stems in the segment of 
the lamella 
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Figure 3 At  very long times the defects tend to accumulate near 
the lamella surface that  is expanded by the bending since the de- 
fect energy is lower in an expanded crystal. This causes an inelas- 
tic increase in the bending angle 87. The relation between 8;- and e i 
is the same as for O~ and 0 e 

positions. The difference in defect energy at different levels 
in a bent crystal is associated with an effective force. For  
the small strains ordinarily used in mechanical relaxation 
experiments this force is not large. The defect moves 
stochastically, with only a small drift velocity in the 
direction of lower defect energy. The solutions of the 
diffusion equation for a defect moving in response to this 
force were obtained both for the case when F is the result 
of a step function applied moment and for the case when F 
results from an applied moment which alternates with a 
frequency of to/2~r. In the following sections an estimate of 
the magnitude of F, the average force in the chain 
direction acting on a defect, will be obtained. Expressions 
for the loss tangent and relaxation strength will be derived 
for the alternating force. 

Estimation of forces on a defect from changes in unit cell 
dimensions 

The dependence of the total energy of a crystal 
containing a defect on the dimensions of a strained unit 
cell was calculated 9. Starting with a model for a crystal 
containing a defect described in ref. 9, the 'a '  and 'b' axes of 
the orthorhombic crystal cell were incremented by small 
amounts Aa and Ab. For each increment a minimum 
energy conformation was sought by employing the 
computational algorithm described in ref. 9. The change 
in the total energy from that of the perfect crystal, AE 0, 
was obtained as a function of Aa. AE as a function of Ab is 
similar. The following equation for AE as a function of Aa 
was obtained. 

where E ~ = - 3 1 4  kJ mo1-1, E2=2720 kJ mol - t ,  and 
a = 0.725 nm. See ref. 9. The results for AE as a function of 
Aa are shown in Figure 4. For Aa/a=O.O1, which is a 
typical magnitude for the strain in a mechanical 
relaxation: experiment, the quadratic term can be 
neglected. For simplicity, the crystal will be considered to 
be bent around the b axis (i.e., the bending axis is parallel 
to the b axis) so that changes in the b 'axis  unit cell 
dimension can be ignored. 

For a bent beam ~ 5 the strain, Aa/a, can be expressed as 
a function of position as follows: 

Aa (x -½)LM 

a GI 
(26) 

Here G is the elastic modulus of the crystal in the direction 
of the a axis and I is the moment of inertia of the cross 
sectional area of the crystal with respect to the neutral 
axis. M is the applied bending moment. 

The gradient of the defect energy in the chain axis 
direction can be regarded approximately as an effective 

- ~AE 
force F on the defect, F ~ -  - -  If one assumes that the 

LOx " 
strain is 0.01 at x = 1, i.e., at the expanded surface, then for 
L = 30 nm 

Fx - 0.02E 1 
- 3.3 x 10- s dyne. 

The force parameter, B, [equation (3)] therefore has a 
value of 1.25 at T = 70°C. It should be remarked that in a 
bent lamella B is independent of L, since Fx is inversely 
proportional to L. In the following analysis B is retained 
as an adjustable parameter and the consequences of 
assigning values in the range from 0.5 to 2.0 are 
investigated. 

In order to get a general picture of the geometry of the 
bent lameUa, estimates of the bending moment  and the 
radius of curvature are provided for a lamella of width y. 
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Figure 4 Defect energy as a funct ion of the a-axis lattice para- 
meter. For this calculation the b-axis lattice parameter was held 
constant at its min imum energy value in a perfect crystal. The 
crossed arrows show that for a lattice strain of  1% the defect energy 
is changed by an amount  commensurate w i th  kT at 70°C 
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In a lamella with a rectangular cross-section ~5, I = yL3 A 
12" 

one percent strain in a lamella with L = 30 nm, y = 100 nm 
and a modulus perpendicular to the chain equal to 3 x 10 9 

dyne cm -2 implies a bending moment M = 5 x  10 -~° 
dyne cm and a radius of curvature of 1.5 × 10 -~ cm 
which is about 50 times the lamellar thickness. 

Mechanical relaxation time from defect drift velocities 
When a step function bending moment is applied to the 

crystal, the defects begin to drift in the direction of the 
force F described above. Reflecting boundary conditions 
keep the number of defects in the crystal lamella constant. 
After a time the defect population will diffuse to a new 
average position and the net drift velocity will be zero. A 
measure of the mechanical relaxation time is %, the time 
required for the average drift velocity to decrease by a 
factor of 1/e. 

The drift velocity v(x,t) is calculated from the solution of 
the diffusion equation using equation (27), 

D d In w(x,t) 
v(x,t)= L dx t-F# (27) 

The quantity sought is the ratio of the drift velocities at 
time t to the initial drift velocity, averaged over all defect 
positions: 

cf(x,t) = G [~(x , t ) -  K w(x,t)] (29) 

Here w(x,t) is the defect distribution function averaged 
over all defect starting positions and K is a constant. The 
last term in equation (29) is small enough to be treated as a 
perturbation. Equation (29) expresses the idea that if a 
stress that tends to expand the lattice is placed on a crystal 
and then at some later time defects arrive in the region of 
interest (in the present case by diffusion), there will be a 
reduction in the stress, or if the stress is held constant, the 
strain will increase. The first situation is often referred to 
as stress relaxation and the second as creep. 

It remains convenient to use the same bent lamella 
model described elsewhere in this paper to provide a 
specific illustration of the connection between defect 
diffusion and the complex modulus, although the ideas 
apply to other strain fields. In a bent lamella the moment 
M can be considered as the generalized stress and the 
bending angle 0 as the generalized strain. Following 
Timoshenko 15, the bending angle is replaced by the 
reciprocal of the radius of curvature p. If z denotes a 
direction perpendicular to the chain axis, in the plane of 
curvature, then p-~=dO/dz. The resulting moment-  
radius of curvature relationship is found to be simpler and 
more convenient than the moment-angle relationship. 

The bending moment in a beam is connected to the 

1 

f v(x,t) (v*( t ) )  = ~ x  v(x,O) 
o 

(28) I0 

This quantity was evaluated numerically for a range of 
values for the two dimensionless parameters B and Dt/L 2. 
The results of the computation are given in Figure 5. 
Within the reasonable range of values for B (see above), it 
turned out that (v*(t)) is insensitive to B, showing only a 
slight increase as B increased. In order to obtain % the 
value of Ot/L 2 for which (v*( t ) )= 1/e is calculated, 
leading to the relation % = L2/(8D). Using the estimate of 
D obtained from the n.m.r, and the dielectric relaxation 
data, and with L =  30 nm a value of 4 .5x10 -3 s is 
obtained for %, the mechanical relaxation time. A very 
slight decrease in the relaxation time as B increases is 
predicted only for large stresses and implies a virtual 
independence of % on strain amplitude. The mechanical 
relaxation times may be very slightly shorter than 
dielectric relaxation times. There are some indications in 
the published data 16 that this occurs, but since the 
predicted differences are so small, these data probably 
reflect other differences in the samples. 

Complex modulus 
In mechanical relaxation experiments in which the 

lamella is deformed by an alternating applied moment, 
the strain is found to lag behind the applied stress. In this 
section the phase lag is derived directly from the defect 
diffusion model by solving the diffusion equation with 
appropriate boundary conditions for the bent lamella 
model. 

Assume that the stress g(x,t) is related to the modulus G 
of a defect free crystal, the unperturbed strain e(x,t), the 
defect concentration and the defect location by the 
following expression: 
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Figure 5 Reduced drift ve loc i t y  (v*( t ) )  = (v(t))/(v(O)) as a f unc t i on  
o f  Dt /L  2 for a weak force on the defect (B = 0.25) and for a 
stronger force (B = 1.85).  The relaxation t ime  rv, wh ich  is defined 
f r o m  the value of rvO/L 2 at wh ich  ( v * ( t ) )  = e - t ,  is no t  affected 
much by the magnitude of the force on the defect 
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stress as follows: 

1 

M = L f a(x,t)xdA = L2y f a(x,t)xdx 
o 

(30) 

In equation (30), y is the width of the lamella in the 
direction of the bending axis and dA is an element of the 
cross sectional area of the lamella. The right hand side of 
equation (30) implies a beam of rectangular cross section. 

The strain, e, from equation (29) for the uniform defect 
distribution that persists for a short interval immediately 
after the step function moment is applied, is expressed as a 
function of the position along the x axis as followstS: 

e(x) =(x -½)L/p, (31) 

where p~ is the elastic radius of curvature of the beam. 
As time evolves, the defects drift along the chain in 

response to the forces described earlier. Since the region in 
which the defects accumulate tends to expand (and vice 
versa) the radius of curvature of the beam decreases with 

time by an amount A , causing the strain in the sample 

to change as follows: 

e(x,t)=(x-½)L[ l +  A(1)  ] (32) 

Equations (31) and (32) express the fact that the bent 
lamella possesses a neutral axis, located at x =½ where 
strains and stresses are zero. Since the increment in the 
radius of curvature is small, it is useful to replace A1/p by 
Ap/p 2. Equation (29) becomes 

Kpe 1 Ap I ,33, 

The following expression for M is derived from equations 
(30) and (33): 

GyL 3 M=q -{1 
1 

f (x - ½)w(x - ½,t)dx 

+ . 

f w(x -½:)dx 
0 

(34) 

Since the response to a step function applied moment is 
being derived, the moment must remain constant at 

M GyL3 1 = ~ - p ~ -  . 

Substitution of this value for M into equation (34) yields 

1 1 

. '2"e  1 /; 
Pe ~ j ~x-~)w~x-½,t)dx w ( x - ½ , t ) d x  ( 3 5 )  

o o 

which shows the time dependence of Ap. The generalized 
time-dependent modulus ~ in the relationship 

M(t) = ~ p -  l(t) (36) 

between the generalized stress, M, and the generalized 
strain, 

is, from equation (34), 

1 

f (x - ½)w(x - ½,t) dx 

~ ' =  12 [LayG~I 12KP~L 1 } (37) 

f w(x-½,t) dx 
0 

The term L3yG/12 in equation (37) is recognized in 
pertinent literature15 as the flexibility constant. 
Expressions for both the relaxation strength r/ and the 
mechanical loss tangent, tan 6, can be obtained from 
equation (37), as follows. 

The relaxation strength q does not depend on the 
functional form of the applied moment since q is derived 
from the limiting values of the relaxed (t = ~ or 09 =0) and 
unrelaxed ( t=0  or 09= ~ )  elasticity moduli. 

For the unrelaxed state, 

f (x - ½)w(x -½,t)dx =0. 

Hence ~ ' ,  = o, = ~e~ . . . .  j = LayG/12. 
For a relaxed state, that is for t = ~ or o9 = 0, 

w,o = o(X) = w(x,t = ~) = 2Be 2 a~x- 1!/(1 _ e- 2 n). 

Performing the integrations in equation (37) yields an 
expression for ~ t=®,=~ ' ,o=o ,  which leads to the 
following expression for the relaxation strength q 

q=  ~' , ,=0,-  ~',,=o~,= ~ t  . . . .  , -  ~'~,o=o, 6Kp~fl(B)/L 
~'~, = o, ~'~ . . . .  , (38) 

where fl(B) is the Langevin function, 

1 
fl(B)=coth(B)--~. (39) 

In the limit of B~O, q=2BKpe/L. For large B,q 
approaches 6Kpe/L, independent of the force parameter 
B. This is because, as B increases, all the defects 
concentrate quickly in the expanded region of the bent 
crystal but cannot move further because of the boundary. 

The dependence of qL/(6Kpe) on the force parameter B 
is of the same functional form as the well-known 
dependence of the average dipole moment on the strength 
of the applied electric field. In either case, high field 
strength produces a saturation effect. In the dielectric 
case, the saturation means that dipoles are oriented in the 
direction of the field. This saturation is rarely achieved in 
dielectric relaxation experiments on polymers because the 
required electric fields exceed the dielectric strength. 
However, for mechanical relaxation, one encounters 
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situations which are closer to saturation. 
An expression for the mechanical loss tangent, tan 6, is 

derived from the equation that describes the response to a 
periodic stress, [equation (l) with F periodic]. The 
solution of the diffusion equation for alternating forces, 
equations (13)-(16), has these interesting properties: if p is 
the order of the perturbation [see equation (13)] then for 
all odd p's 

1 

f wgx)dx = o 
0 

while for all even p's, p > 0 

, /09L 2 
In Figure 6, two plots of t / - '  tan6 versus ,oglo[-~-D / 

\ - -  - / 

are presented, one for t/u0.1, the other for q=0.01. The 
{09L 2 

plot of tan6 vs. loglo ~ n - ~  / is seen to be almost, but not 

exactly, symmetric around its maximum value. The 
asymptotic behaviour for 09--*0 and 09--, ~ are obtained 
from equation (42): As to~0, tanS=09L2/lOD and as 
to--. ~ ,  tan6 = 12D/toL 2. Hence, approximately, these two 
limiting values are 09t M and (o~zm)- 1, respectively, a well- 
known result. Figure 6 shows that for low q, tan5 = q/2 at 
to .... in agreement with the well-known result for tan6 at 
the frequency at maximum loss. For L = 3 0  nm and 
D=2  x 1 0  - 9  c m  2 s - l ,  O.~m~x= 2.2 x 1 0  3 S - 1 .  

1 

f xwp(x)dx = 0 
0 

For odd p, wp(x) = - wp(l - x) and wp(½) = 0. Considering 
only the zeroth and first perturbation terms, p =0  and 
p = 1, leads to a simplified version of equation (34) for the 
complex bending moment: 

1 

L3,°F1 M(t) = - 24BKp~L- 
0 

(40) 

In equation (40) and the following ones use is made of the 
symmetry properties of wl(x) already described [see also 
equation (15)]. The complex modulus, obtained from 
equation (37) is 

1 

~, LayG[-'_24BKpeL-IfxwI(x)dx] = q u - k  I 
0 

(41) 

with wl, a complex quantity, given by equation (15). 
The mechanical loss factor, tan 6, is obtained directly 

from equation (41). 

1 

12r/Imaginaryf XWl(X)dx 
tan 6 - o 

1 

1 - 12q Realf xwl(x)dx 
0 

(42) 

In deriving equation (42), use is made of equation (38), 
with fl(B) being replaced by its linear value, i.e., fl(B) = B/3. 
It is evident that tan 5 is a function of (L209/D), i.e., the 
reduced variable C which appears in equation (15). 
Equation (42) is unwieldy to analyse so it was solved 
numerically using a computer programmed for complex 
variable arithmetic for a range of values of L209/D. 

Computations showed that tan 5 has its maximum 
value at 09L2/D=n 2. If tomax=Z~ 1, then Dz~/L2=x 2, 
which provides another definition of zM, the mechanical 
relaxation time. This value is close to zv, the relaxation 
time obtained from the defect drift velocities: as seen from 
calculations described above that produced Figure 5, 
%=L2/8D. Hence, zm~-0.8 %. 

Numerical estimate of relaxation strength 
A lamella bent elastically so that adjacent stems make 

an angle Of 0e with each other will bend further by an angle 
0~ as the defects it contains diffuse to lower energy 
positions. This 'creep' process is analysed to provide a 
basis for the estimate of ~/from available information. The 
elastic bending angle, 0~ is equal to aM~G! and is therefore 
a function of the elastic modulus and lamellar geometry. 

A rigorous calculation of 0i is beyond the scope of this 
paper so a simplified model is adopted. Each defect is 
considered to cause a local expansion 6a or fib along the 
corresponding axis of the unit cell. The expansion in the c 
axis direction is assumed to be zero. The values of 6a and 
5b can be estimated from the change in volume V of a 
chain containing a defect using the following relation 
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Figure 6 Plot of the ratio of the mechanical loss tangent to the 
relaxation strength as a funct ion of  Iogto(wL2/D~2). For an ex- 
periment wi th alternating moments the mechanical relaxation t ime, 
rmech , is defined as rmech = 1/O~ma x = L2/D1r 2 
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(43) 

Computations performed in conjunction with the defect 
modelling work reported in ref. 9 showed that 6a/a ~- 6b/b, 
so that 6a/a =6V/2E A somewhat similar approach was 
used by Farmer and Eby x8 in polyethylene crystals 
containing an occasional CH3 group in place of an H 
atom. 

It is assumed that when a defect is at the end of a stem 
the angle between that stem and adjacent ones increases 
by 6a/p. This intuitive concept can be generalized as 
follows to account for the dependence of the inelastic part 
0~ of the angle between stems on the time and space 
variation of the defect distribution: 

1 

0 

(44) 

The mechanical relaxation strength r/is defined as the 
ratio of the inelastic bending at long times to the total 
bending. 

Oi 
(45) 

t /=0e+0  ~ 

Since the inelastic bending is relatively small it can be 
ignored in the denominator of equation (45). The inelastic 
bending is calculated from equation (44) by replacing 
w(x -½,t) with w(x -½,~) and integrating over x from 0 to 
1. Substitution into equation (42) leads to 

6a GI 
r/= ~ppfl(B)~- (46) 

where [3(B) is the Langevin function introduced earlier. 
An interesting simplification of equation (46)' results if 

the value of 2Aa/aL evaluated at x = 1 is substituted for 
the ratio M/GI according to equation (26). (Note that 6a is 
the lattice expansion associated with a defect while Aa 
introduced in equation (25) is determined by the elastic 
strain. For a bent lamella Aa is a function of position in the 
lamella.) Therefore, 

L 6a 
2p Aa(x = 1) fl(B) (47) q 

Timoshenko ~ 5 noted that L/2p is approximately equal to 
Aa 

the strain - -  at x = 1, that is 
a 

L Aa(x = 1) 

2p a 

Substitution into equation (47) produces 

r/= 6aft(B) (48) 
a 

Equation (48) indicates that the relaxation strength is 
essentially independent of the elastic strain amplitude 
except through the force parameter B which appears in 

the argument of the Langevin function ft. Equation (48) 
can also be used to estimate the perturbation parameter K 
which was defined, but not evaluated, in the preceding 
section. 

The computations performed in conjunction with the 
work reported in ref. 9 lead to an estimate o f fV /V  = 0.086. 
Assuming that the change in lattice parameter a is 
distributed uniformly along the C15H32 oligomer used in 
the calculation leads to a value of 6a/a of 0.043. In fact the 
change in lattice parameter a may be as much as a factor of 
two larger since the region that is significantly expanded 
by the defect is only six or seven repeat units long. We 
therefore estimate 

q =0.04 fl(B) to 0.08 fl(B) 

For a lamella 30 nm thick with a strain of one percent at 
x =  1, B=1.25, and fl(1.25)=0.38, an estimate of the 
relaxation strength in the range of 1.5 to 370 is obtained. 
This estimate assumesa concentration of one defect per 
stem. As noted earlier, the defect concentration inferred 
from the longitudinal acoustic mode intensity 
measurements 6, x 7 ranges from 1/6 defect per stem at 70°C 
to 3/4 defect per stem at 120°C so the above estimates oft/ 
could be improved by multiplying by the number of 
defects per stem at a particular temperature. 

The value of the relaxation strength derived from this 
analysis is lower than observed relaxation strengths in 
crystalline polyethylene in spite of the fact that the 
relaxation times predicted are in reasonable agreement 
with those observed. This leads to the suggestion that the 
relaxation strengths are increased by processes which 
involve larger scale structures which move on a time scale 
governed by defect diffusion. There are many structures 
and processes which may behave in such a manner. An 
example is the slippage of a lamella past an adjacent 
lameUa with tie molecules connecting the two. It is 
possible that the rate controlling step is the movement of 
the tie molecule through the lamella by the diffusion of a 
series of defects through the part of the tie molecule that is 
inside the lamellae. 

COMPARISON OF DEFECT DIFFUSION 
MODEL AND COMPUTER SIMULATED 
DEFECT MOTION 

The macroscopic model of defect motion described in this 
paper can be compared with the more microscopic 
computer simulation of defect motion described earlier 9. 
In the microscopic model the defect is considered to move 
over potential barriers separating a series of potential 
wells. The rate of passage of a defect over these barriers is 
related to the diffusion constant D used in this paper 
through models developed by Zener 2° which are 
summarized by Kittel 2 x. These models lead to the relation 

D = ca 2 ve- F./k r (49) 

In equation (49) the probability that the defect occupies 
the site adjacent to a particular potential barrier is c, 
which is proportional to the defect concentration. In the 
case of a defect containing six CH2 groups and extending 
about 0.6 nm along the chain in a stem of length 30 nm, 
c = 0.02. The height of the barrier E was calculated 9 as 
about 17 kJ mol-1. The distance a that the centre of the 
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defect moves in travelling from one well to the next is 
about 0.125 nm, which is half the crystallographic repeat 
distance along the chain axis direction in a polyethylene 
crystal. The rate, v, at which the defect impacts the barrier 
is estimated from the mass of a defect containing six CH2 
groups and from the apparent force constant (0.9 × 105 
dyne cm) described by McCullough et al. 22 The rate 
was found to be around 1.7 x 1012 s -1 

The values of these parameters which describe the rate 
of motion of a defect over a barrier yield a value of D from 
equation (49) which is around 5× 10 -9 cm 2 s -1, in 
satisfactory agreement with the values of D obtained from 
the n.m.r, and dielectric relaxation data. 

SCALING APPLIED TO DEFECT MOTION 

Scaling theory as described by deGennes 11 leads to a 
simple connection between the relaxation time, t0, of a 
single CH2 unit, the probable time for a defect to move a 
crystallographic repeat unit (0.25 nm) along the chain, and 
the probable time for a defect to move a distance of 
approximately L which is required to produce mechanical 
relaxation according to the mechanisms described above. 

The scaling approach suggests that the relaxation time 
associated with a process involving N links of a chain is 
N3%. The defect considered here involves approximately 
six CH 2 units. The relaxation time for a single unit of a 
chain 11 is around 10 - l °  s so scaling gives a defect 
relaxation time of 63 × 10-10 =2.2 × 10 -8 s. The diffusion 
coefficient of around 2 × 10  - 9  c m  2 s - 1  estimated from 
n.m.r, and dielectric relaxation data indicates that a defect 
will move a distance of one repeat unit in a probable time 
of (2.5 x 10- 8)2/D = 3 x 10- 7 s which is within an order of 
magnitude of the value predicted by scaling. In this 
argument the defect displays some properties of the 'blob' 
described by deGennes 1 

Now consider the mechanical relaxation process in a 
stem 30 nm long which contains 240 CH 2 units. The 
scaling arguments predict a relaxation time for the stem of 
(240)3×10-1°=1 .4×10-3s .  This is the time scale in 
which observed mechanical relaxation processes occur. It 
was shown earlier in this paper that the stochastic 
diffusion of a particular well-defined defect along routes of 
lengths commensurate with the stem length also can lead 
to mechanical and dielectric relaxation processes with 
relaxation times in the millisecond range. 

SUMMARY 

The chain rotation, effects and mechanical relaxation 
processes associated with the motion of a single point 
dislocation (defect) were determined by Brownian 
molecular dynamics simulations. The defect motion in 
polyethylene is diffusive and characterized by a diffusion 
coefficient and a mobility (the drift velocity divided by the 
average force on the defect). The defect concentration as a 
function of time and 16osition, that is the probability of 
finding a defect in a particular region at a particular time, 
was calculated by solving the Smoluchowski diffasion 
equation with appropriate boundary conditions. The 
average times required for a defect to diffuse along a route 
that produced observed chain rotation effects were then 
determined by calculating first passage times for the 
defects along the required routes. Data on polyethylene 
chain rotation from dielectric relaxation or carbon-13 

nuclear magnetic resonance experiments independently 
lead to a reasonable value for the diffusion coefficient for a 
defect. The average defect velocity was determined by 
adding the drift velocity caused by external forces to the 
diffusional or Brownian motion velocities. A mechanical 
relaxation time associated with the decay of average drift 
velocity was described. Using the already determined 
diffusion coefficient the relaxation time calculated falls in 
the range of those observed experimentally. It is suggested 
that defect diffusion plays a central role in the 
determination of mechanical and dielectric relaxation 
times although other processes must be involved to 
account for the magnitude of the observed relaxation 
strengths. The mobility of a defect is directly involved in 
the coupling between a strain field and the mechanical 
relaxation process, but the mobility plays only a small role 
in the determination of the relaxation time for strains of 
the order of a few percent. 

The diffusion coefficient was connected to the 
parameters involved in modelling the internal motions of 
a defect as it moves over the barriers that separate 
minimum energy conformations at adjacent sites along 
the chain using the ideas of Zener 2°'21. The scaling 
method connects the relaxation time associated with a 
single repeat unit to both the relaxation time of a defect 
and that of a complete stem which in the model presented 
here is closely related to the dielectric and mechanical 
relaxation processes. 

Although the model developed in this paper deals only 
with linear polyethylene the ideas presented seem to have 
more general applicability. Certainly the specific defect 
considered here, the point dislocation or twist dispiration 
loop, can be described in other crystalline polymers and 
will have a reasonable diffusion coefficient and mobility in 
many of them. It appears reasonable to suggest that even 
in glassy polymers where there is no periodic translational 
structure somewhat similar relaxation processes may 
occur as consequences of the motion of a reptating chain 
segment in response to an external electric or strain field. 

The concentration of defects depends upon 
temperature and other factors. Two kinds of experiments, 
namely, the decrease in intensity of the longitudinal 
acoustic mode with increasing temperature 6 and the 
increase in the concentration of trans gauche sequences 
observed in partially doubly deuterated polyethylene by 
the relative intensities of reliably assigned rocking mode 
vibrations 8 suggest that 0.1 to 1 defect per stem is the 
correct order of magnitude for the temperature range 
between 70°C and 120°C. Detailed analysis of the effects 
of defect concentration must await more quantitative 
measurement of the variation of defect concentration with 
temperature. Also, the problems associated with the 
interactions of the specific defect analysed in this paper 
with folds, chain ends, ordinary crystallographic 
dislocations, localized chain twist, tie molecules, and 
other geometrical features of polyethylene chains often 
referred to collectively as the amorphous component, 
must be left to a future time when these are modelled in 
greater detail. 
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